To prevent accidents arising from the misuse of this controller, please ensure the operator receives this manual.

\triangle SAFETY PRECAUTIONS

- To ensure safe and correct use, thoroughly read and understand this manual before using this instrument.
- This instrument is intended to be used for industrial machinery, machine tools and measuring equipment. Verify correct usage after consulting purpose of use with our agency or main office. (Never use this instrument for medical purposes with which human lives are involved.)
- External protection devices such as protection equipment against excessive temperature rise, etc. must be installed, as malfunction of this product could result in serious damage to the system or injury to personnel. Also proper periodic maintenance is required.
- This instrument must be used under the conditions and environment described in this manual. Shinko Technos Co., Ltd. does not accept liability for any injury, loss of life or damage occurring due to the instrument being used under conditions not otherwise stated in this manual.
Caution with respect to Export Trade Control Ordinance
To avoid this instrument from being used as a component in, or as being utilized in the manufacture of weapons of mass destruction (i.e. military applications, military equipment, etc.), please investigate the end users and the final use of this instrument. In the case of resale, ensure that this instrument is not illegally exported.

Caution

- This instrument should be used according to the specifications described in the manual. If it is not used according to the specifications, it may malfunction or cause fire.
- Be sure to follow the warnings, cautions and notices. Not doing so could cause serious injury or malfunction.
- Specifications of the JCS-33A and the contents of this instruction manual are subject to change without notice.
- This instrument is designed to be installed in a control panel. If it is not, measures must be taken to ensure that the operator cannot touch power terminals or other high voltage sections.
- Be sure to turn the power supplied to the instrument OFF before cleaning this instrument.
- Use a soft, dry cloth when cleaning the instrument.
(Alcohol based substances may cause tarnishing or defacement of the unit.)
- As the display section is vulnerable, do not strike or scratch it with a hard object.
- Any unauthorized transfer or copying of this document, in part or in whole, is prohibited.
- Shinko Technos CO., LTD. is not liable for any damages or secondary damages incurred as a result of using this product, including any indirect damages.

1. Model name

1.1 Model name

*1: Alarm actions (9 types and No alarm action) and Energized/Deenergized can be selected by keypad.
*2: Thermocouple, RTD, DC current, and DC voltage can be selected by key operation.
*3: Supply voltage 100 to 240 V AC is standard. When ordering 24 V AC/DC, enter " 1 " after the input code.
1.2 How to read the model name label Model name labels are attached to the case and the inner assembly. For Heater burnout alarm output, CT rated current is written in the bracket.

	(Model name label)	Relay contact ob.) ${ }^{\text {eltput/Multi-range input }}$
	JCS-33A-R/M	
	A2	Alarm 2 (A2) output
	W(20A)	Heater burnout alarm output (20A)
(3)-	No.	

(1): Model name (2): Option, supply voltage ("1" is entered only for 24 V AC/DC)
(3): Serial number (Only on inner assembly)

2. Name and functions of the sections

(Fig. 2-1)
(1) PV display: Indicates the input value with a red LED.
(2) SV display: Indicates the setting value with a green LED.
(3) SV1 indicator: A green LED lights up when SV1 is indicated on the SV display.
(4) SV2 indicator: A yellow LED lights up when SV2 is indicated on the SV display.
(5) OUT1 indicator: When OUT1 or heating output is ON, a green LED lights up. (For A/ \square type, it flashes corresponding to the manipulated variable in a 0.25 second cycle)
(6) OUT2 indicator: When OUT2 (option DT) is ON, a yellow LED lights up.
(7) A1 indicator : When A1 output is ON, a red LED lights up.
(8) EVT indicator: When Event output (option: A2, LA or W) is ON, a red LED lights up.
(9) AT indicator : When auto-tuning or auto-reset is being performed, a yellow LED flashes.
(10) TX/RX indicator : A yellow LED flashes during serial communication output (transmitting).
(11) Increase key (\triangle) : Increases the numeric value.
(12) Decrease key (∇) : Decreases the numeric value.
(13) Mode key ((\mathbb{Q}) : Selects the setting mode or registers the setting value.
(By pressing the Mode key, the setting value or selected value can be registered)
(14) OUT/OFF key (D) : The control output ON/OFF function or Auto/Manual control function can be switched. (To cancel the control output ON/OFF function, press the OUT/OFF key again for approx. 1 second.)

Notice

When setting the specifications and functions of this controller, connect terminals 1 and 2 for power source first, then set them referring to Chapter " 5 . Setup" before performing " 3 . Mounting to control panel" and "4. Wiring connection".

3. Mounting to control panel

3.1 Site selection

This instrument is intended to be used under the following environmental conditions (IEC61010-1): Overvoltage category II, Pollution degree 2
Ensure the mounting location corresponds to the following conditions:

- A minimum of dust, and an absence of corrosive gases
- No flammable, explosive gases
- Few mechanical vibrations or shocks
- No exposure to direct sunlight, an ambient temperature of 0 to $50^{\circ} \mathrm{C}$ (32 to $122^{\circ} \mathrm{F}$) that does not change rapidly
- An ambient non-condensing humidity of 35 to 85% RH
- No large capacity electromagnetic switches or cables through which large current is flowing
- No water, oil or chemicals or where the vapors of these substances can come into direct contact with the controller

3.2 External dimensions

(Fig. 3.2-1)

3.3 Panel cutout

Lateral close mounting n : Number of units mounted

3.4 CT (Current transformer) external dimension

CTL-6S (for 5A, 10A, 20A)

CTL-12-S36-10L1 (for 50A)
(Fig. 3.4-1)

3.5 Mounting

Mount the controller vertically to ensure it adheres to the Dust-proof/Drip-proof specification (IP66).
Mountable panel thickness: Within 1 to 15 mm
Insert the controller from the front side of the panel.
Attach the mounting brackets by the holes at the top and bottom of the case and secure the controller in place with the screws.

Warning

As the case is made of resin, do not use excessive force while screwing in the mounting bracket, or the case or screw type mounting bracket could be damaged.
The torque is approximately $0.12 \mathrm{~N} \cdot \mathrm{~m}$.

4. Wiring connection

Warning
Turn the power supply to the instrument off before wiring or checking.
Working or touching the terminal with the power switched on may result in severe injury or death due to Electric Shock.

- OUT1 : Control output 1 (Heating output)
- OUT2 : Control output 2 (Cooling output)
- A1 : Alarm 1 output
- EVT : Event output (A2 output, Heater burnout alarm output, Loop break alarm output)
- CT : CT input
- SV2 : Main setting 2 (SV2)
- RS-485: Serial communication (RS-485)
- TC : Thermocouple
- RTD : Resistance temperature detector
-DC : DC current, DC voltage
(Fig. 4-1)

4. Notice

- The terminal block of the JCS-33A is designed to be wired from the left side. The lead wire must be inserted from the left side of the terminal, and fastened by the terminal screw.
- Dotted lines show options.
- Use a thermocouple and compensating lead wire that correspond to the sensor input specification of this controller.
- Use the 3-wire RTD which corresponds to the input specification of this controller.
- This controller does not have built-in power switch, circuit breaker or fuse. Therefore, it is necessary to install them in the circuit near the external controller.
(Recommended fuse: Time-lag fuse, rated voltage 250V AC, rated current 2A)
- When using a 24V AC/DC for the power source, do not confuse the polarity when it is DC.
- When using a relay contact output type, externally use a relay according to the capacity of the load to protect the built-in relay contact.
- When wiring, keep input wires (thermocouple, RTD, etc.) away from AC sources or load wires to avoid external interference.
- Do not apply a commercial power source to the sensor connected to the input terminal nor allow the power source to come into contact with the sensor.

Lead wire solderless terminal

Use a solderless terminal with an isolation sleeve in which an M3 screw fits as shown below.
The torque is approximately $0.6 \mathrm{~N} \cdot \mathrm{~m}$ to $1.0 \mathrm{~N} \cdot \mathrm{~m}$.

Solderless terminal	Manufacturer	Model name	Tightening torque
	Nichifu Terminal Industries CO.,LTD.	$1.25 \mathrm{Y}-3$	
	Japan Solderless Terminal MFG CO.,LTD.	VD1.25-B3A	Max. $1.0 \mathrm{~N} \cdot \mathrm{~m}$
Round type	Nichifu Terminal Industries CO.,LTD.	$1.25-3$	
	Japan Solderless Terminal MFG CO.,LTD.	V1.25-3	

(Fig. 4-2)

Option: Heater burnout alarm

(1) This alarm is not available for detecting heater current under phase control.
(2) Use the current transformer (CT) provided, and pass one lead wire of the heater circuit into the hole of the CT.
(3) When wiring, keep the CT wire away from AC sources or load wires to avoid the external interference.

5. Setup

Wire the power terminals only. After the power is turned on, the sensor input characters and temperature unit are indicated on the PV display and the input range high limit value is indicated on the SV display for approximately 3 seconds. (Table 5-1)
(If any other value is set during the scaling high limit setting, the set value is indicated on the SV display) During this time, all outputs and the LED indicators are in OFF status.
Control will then start and the input value will be indicated on the PV display and main setting value (SV) will be indicated on the SV display. (While control output OFF function is working, ar is indicated on the PV display.)
(Table 5-1)

* 50Ω shunt resistor (sold separately) must be installed between input terminals.

5.2 Main setting mode

Character	Name, Function, Setting range	Default value
4	SV1 - Sets SV1. - Setting range: SV low limit to SV high limit	$0^{\circ} \mathrm{C}$
$4 \underbrace{\prime}$	SV2 - Sets SV2. - Available only when the option SM is applied. - Setting range: SV low limit to SV high limit	$0^{\circ} \mathrm{C}$

5.3 Sub setting mode

5．1 Operation flowchart

Outline of operation procedure

Operation before running

［Step 1 Initial setting］
 Set Input type，Alarm action type，control action， etc．in Auxiliary function setting mode 2.

［Step 2 Sub setting mode］：Set PID values and Alarm setting values in the Sub setting mode．
［Step 3 Auxiliary function setting mode 1］：Set Setting value Lock，SV high limit and SV low limit in Auxiliary function setting mode 1 （If Step 3 is not necessary，skip this step．）．
［Step 4 Main setting mode］：Set SV（desired value）in the Main setting mode．

Setting items with dotted lines are optional and they appear only when the options are added．

Alarm 1 （A1）setting procedure［Numbers（1）to（5）are indicated on the flowchart．］
（1）［A1 action selection］：Select an alarm type．
［lf an alarm type except for－－－－is selected，items（2）to（5） are indicated and they can be set if necessary．］
（2）［A1 action Energized／Deenergized selection］：Select Alarm 1 contact output ON（Energized：пローデ～）or OFF（Deenergized：ヶにばゥ）．
（3）［A1 hysteresis setting］：Set A1 hysteresis．
（4）［A1 action delayed timer setting］：Set A1 action delayed time． （If input enters alarm action range and setting time has passed， the alarm is activated．）
（5）［A1 setting］：Set action point of A1 output．
［Note］If an alarm action is changed，the alarm setting value becomes $0(0.0)$ ．Therefore it is necessary to reset it．

If AT is cancelled during the process， PID values revert to previous value． dores automatically cancelled －Set the value with the \triangle, ∇ keys． －ON／OFF action when set to 0 or 0.0 －Set the value with the \triangle ，∇ keys． －Available when Heating／Cooling control（OUT2）is added

> - PD action when set to 0 , and autoreset can be performed.
－Set the value with the \triangle, ∇ keys． －Setting the value to 0 disables the function．
－Set the value with \triangle, ∇ keys．
－Set the value with \triangle, ∇ keys． －Not available for DC current output or when OUT1 is ON／OFF action
－Set the value with \triangle, ∇ keys． －Not available when OUT2 is ON／OFF
－Set the value with \triangle, ∇ keys． Not available if－－－is selected Set the value with \triangle, V keys －Not available if－－－－is selected during A2 action selection －Available only when option LA is added． Loop break alarm span $[\bullet$ Set the value with \triangle, ∇ keys．

;	Integral time setting - Sets integral time for OUT1. - Setting the value to 0 disables the function. - Not available when OUT1 is ON/OFF action. - Auto-reset can be performed when PD is control action (I=0). - Setting range: 0 to 1000 seconds	200 seconds
\square	Derivative time setting - Sets derivative time for OUT1. - Setting the value to 0 disables the function. - Not available when OUT1 is ON/OFF action. - Setting range: 0 to 300 seconds	50 seconds
7	ARW setting - Sets ARW for OUT1. - Available only when PID is the control action. - Setting range: 0 to 100\%	50\%
c	OUT1 proportional cycle setting - Sets proportional cycle for OUT1. - Not available when OUT1 is DC current output type or ON/OFF - Setting range: 1 to 120 seconds	30 seconds or 3 seconds ion.
- -	OUT2 proportional cycle setting - Sets proportional cycle for OUT2. - Not available if the option DT is not applied or when OUT2 is O - Setting range: 1 to 120 seconds	$3 \text { seconds }$ FF action.
Bi	A1 setting - Sets action point for A1 output. - Not available if No alarm action is selected during A1 action sele - Refer to (Table 5.3-1).	
$B E$	A2 setting - Sets action point for A2 output. - Not available if option A2 is not applied or if No alarm action is selected during A2 action selection. - Refer to (Table 5.3-1).	$0^{\circ} \mathrm{C}$
Hロロ, XX.X indicated in turn	Heater burnout alarm setting - Sets the heater current value for Heater burnout alarm. - Self-holding is not available for the alarm output. - Available only when the option W is added. - Rating 5A: 0.0 to 5.0A Rating 10A: 0.0 to 10.0 A Rating 20A: 0.0 to 20.0A Rating 50A: 0.0 to 50.0 A	0.0A
\&F\%	Loop break alarm action time setting - Sets the time to assess the Loop break alarm. - Available only when the option LA is applied. - Setting range: 0 to 200 minutes	0 minutes
1FH	Loop break alarm action span setting - Sets the temperature to assess the Loop break alarm. - Available only when the option LA is applied. - Setting range: 0 to $150^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right), 0.0$ to $150.0^{\circ} \mathrm{C}$ (F) or 0 to 1500	$0^{\circ} \mathrm{C}$

(Table 5.3-1)

Alarm action	Setting range	
High limit alarm	- (Input span) to input span ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	${ }^{\circ} 1$
Low limit alarm	- (Input span) to input span ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	${ }^{\circ} 1$
High/Low limits alarm	0 to input span ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	${ }^{\circ} 1$
High/Low limit range alarm	0 to input span ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	${ }^{1} 1$
Process high alarm	Input range low limit value to input range high limit value ${ }^{* 2}$	
Process low alarm	Input range low limit value to input range high limit value ${ }^{* 2}$	
High limit alarm with standby	- (Input span) to input span ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	${ }^{* 1}$
Low limit alarm with standby	- (Input span) to input span ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	${ }^{\circ} 1$
High/Low limits alarm with standby	0 to input span ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	${ }^{\circ} 1$

- When input has a decimal point, the negative lower limit value is -199.9 , and the positive upper limit value is 999.9.
- All alarm actions except process value alarms are \pm deviation setting from the main setting.
*1: For DC input, the input span is the same as the scaling span.
*2: For DC input, input range low (or high) limit value is the same as scaling low (or high) limit value.

Input type (character indication) and range		
	$\begin{array}{r} -200 \text { to } 1370^{\circ} \mathrm{C}: \\ -199.9 \text { to } 400.0^{\circ} \mathrm{C}: \end{array}$	$\begin{array}{ll} \text { K } & -320 \text { to } 2500 \text { F: } \\ -199.9 \text { to } 750.0 & F \\ \hline \end{array}$
-20	-200 to $1000{ }^{\circ} \mathrm{C}$	-320 to 1800 F : F
R	0 to $1760{ }^{\circ} \mathrm{C}$: ,	$\mathrm{R} \quad 0$ to $3200{ }^{\circ} \mathrm{F}:-\quad \mathrm{F}$
S	0 to $17600^{\circ} \mathrm{C}$: ${ }^{4}$	S $\quad 0$ to $3200{ }^{\circ} \mathrm{F}$
B	0 to $1820{ }^{\circ} \mathrm{C}$ C	B $\quad 0$ to 3300 F : F
-20	-200 to $800{ }^{\circ} \mathrm{C}$ C ${ }^{\text {c }}$	E $\quad-320$ to $1500{ }^{\circ} \mathrm{F}: E$
$\begin{array}{r} -199 \\ -29 \end{array}$	-199.9 to $400.0^{\circ} \mathrm{C}:$	T -199.9 to 750.0\%: ${ }^{\text {T }}$
$\begin{array}{ll} \mathrm{N},-\mathrm{II} & -20 \end{array}$		$\begin{array}{lr} \mathrm{N} \\ \mathrm{PL}-\mathrm{II} & -320 \text { to } 2300 \mathrm{~F} \\ 0 \text { to } 2500 & \mathrm{~F}: \end{array}$
C(W/Re5-26)	5-26) 0 to $2315{ }^{\circ} \mathrm{C}$: \quad -	$\mathrm{C}\left(\right.$ W/Re5-26) 0 to $4200{ }^{\circ} \mathrm{F}: ~=~ F / F$
Pt100 -199	-199.9 to 850.0 ${ }^{\circ} \mathrm{C}$: ${ }^{\text {a }}$	Pt100 -199.9 to 999.9\% Fi, F
JPt100-199.9	-199.9 to $500.0{ }^{\circ} \mathrm{C}$:	JPt100-199.9 to 900.0\%
Pt100 -2	-200 to $850{ }^{\circ} \mathrm{C}$: $\mathrm{Pr}^{\prime}{ }^{-1}$	Pt100 -300 to 1500\% : F'F
JPt100 -20	-200 to $500{ }^{\circ} \mathrm{C}$:	
4 to 20mA DC - 1999 to 9999: LEDAF		
0 to 20mA DC -1999 to 9999: 1 EDA		
0 to 1V DC -1999 to 9999:		
0 to 5V DC -1999 to 9999:		
1 to 5V DC -1999 to 9999:		
0 to 10V DC -1999 to 9999:		

Alarm action type

High limit alarm: The alarm action is \pm deviation setting from the SV. The alarm is activated if the input value reaches the high limit setting value. Character indication: H^{\prime}
Low limit alarm: The alarm action is \pm deviation setting from the SV. The alarm is activated if the input value goes under the low limit setting value. Character indication:,
High/Low limits alarm: Combines High limit and Low limit alarm actions. When input value reaches high limit setting value or goes under the low limit setting value, the alarm is activated. Character indication: ,in
High/Low limit range alarm: When input value is between the high limit setting value and low limit setting value, the alarm is activated. Character indication: ai a
Process value alarm: Within the scale range of the controller, alarm action points can be set at random and if the input reaches the randomly set action point, the alarm is activated.
Character indication: Process high alarm $\boldsymbol{H}^{\prime} \uparrow$, Process low alarm, $-\boldsymbol{F} \boldsymbol{\prime}$
Alarm with standby function: When the power to the controller is turned on, even if the input enters the alarm action range, the alarm is not activated. (If the controller is allowed to keep running, once the input exceeds the alarm action point, the standby function will be released.)
Character indication:
High limit alarm with standby
Low limit alarm with standby
High/Low limits alarm with standby:

(2)
(3)

Output stat when inpu	us selection abnormal	- Make a selection with the \triangle, ∇ keys. - Available only when input is DC current and DC voltage with DC current output.
PV Eobil	$\begin{aligned} & \text { sv Selected } \\ & \text { value } \end{aligned}$	
\downarrow ®		
OUT/OFF key function		- Make a selection with the \triangle, ∇ keys.
PV ririnit	$\begin{array}{\|c} \hline \text { SV } \\ \text { Selected } \\ \text { value } \end{array}$	
1 (

5．4 Auxiliary function setting mode 1

Character	Name，Function，Setting range \quad Default value
	Setting value lock selection Unlock
	－Locks the setting values to prevent setting errors． The setting item to be locked depends on the designation． －When Lock 1 or Lock 2 is designated，PID Auto－tuning and Auto－reset cannot be carried out． －Be sure to select Lock 3 when changing the setting value frequently via communication function considering the life of non－volatile memory． －－－－（Unlock）：All setting values can be changed． Loc ！（Lock 1）：None of the setting values can be changed． Locl（Lock 2）：Only main setting value can be changed． Loc I（Lock 3）：All setting values except for Input type selection can be changed． However，changed values revert to their former value after power is turned off because they are not saved in the non－volatile memory． Do not change any setting item in Auxiliary function setting mode 2. If any item in Auxiliary function setting mode 2 is changed，it will affect other setting items such as the SV and Alarm setting．
－，－	SV high limit setting －Sets the SV high limit． －Setting range：SV low limit to input range high limit value or SV low limit to scaling high limit value
4	SV low limit setting Input range －Sets the SV low limit． low limit value －Setting range：Input range low limit value to SV high limit or scaling low limit value to SV high limit
40	Sensor correction setting －Sets the correction value for the sensor． －Setting range：-100.0 to $100.0^{\circ} \mathrm{C}$（ ${ }^{\circ} \mathrm{F}$ ），or -1000 to 1000
ロニ゙ーシ	Communication protocol selection Shinko protocol －Selects communication protocol． －Available only when the option C5 is applied．
ィี゙ゥロ	Instrument number setting －Sets the instrument number individually to each instrument when communicating by connecting plural instruments in serial communication． －Available only when option C5 is added． －Setting range： 0 to 95
ニズッ	Communication speed selection －Selects a communication speed equal to that of the host computer． －Available only when option［C5］is added．
ロニット	Parity selection －Selects the parity． －Not available when the option C5 is not added or when Shinko protocol is selected in the Communication protocol selection． －No parity：manE，Even parity：ELEn，Odd parity：ada＇
ロニウィ	Stop bit selection －Selects the stop bit． －Not available when option C5 is not added or when Shinko protocol is selected in the Communication protocol selection． －Setting range： 1,2

5．5 Auxiliary function setting mode 2

Character	Name，Function，Setting range		Default value
ーErit	Input type selection －The input type can be selected from thermocouple（10 types），（－200 to $1370^{\circ} \mathrm{C}$ ） RTD（2 types），DC current（2 types）and DC voltage（4 types），and the unit ${ }^{\circ} \mathrm{C} / \mathrm{F}^{\circ} \mathrm{F}$ can be selected as well． －When changing the input from DC voltage to other inputs，remove the sensor connected to this controller first，then change for the input．If the input is changed with the sensor connected，the input circuit may be broken．		
	K	K -320 -199.9 J -320 0	

－ta	Overlap band／Dead band setting －Sets the overlap band or dead band for OUT1 and OUT2． ＋setting value：Dead band，－setting value：Overlap band －Available only when the option DT is added －Setting range：-100.0 to $100.0^{\circ} \mathrm{C}$（ F ），or 1 to 1000
ドジィい	OUT2 ON／OFF action hysteresis setting －Sets ON／OFF action hysteresis for OUT2． －Available only when the option DT is added －Setting range： 0.1 to $100.0^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$ ，or 1 to 1000
FiL if	
Fitar	A2 action selection －Selects an action for A2． －Available only when alarm A2 is added －Action selection and default value are the same as those of A1 action selection．
	A1 action Energized／Deenergized selection －Selects Energized／Deenergized for A1． －Not available if No alarm action is selected in A1 action selection －Energized：noin Deenergized：，Eロ゙ー
ロジィ	A2 action Energized／Deenergized selection －Selects Energized／Deenergized for A2． －Not available if alarm A2 is not added or if No alarm action is selected during A2 action selection －Action selection and default value are the same as those of A1 action Energized／Deenergized selection．
F	A1 hysteresis setting －Sets hysteresis for A1． －Not available if No alarm action is selected in A1 action selection －Setting range： 0.1 to $100.0^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$ ，or 1 to 1000
タゴージ	A2 hysteresis setting －Sets hysteresis for A2． －Not available if alarm A2 is not added or if No alarm action is selected during A2 action selection －Setting range： 0.1 to $100.0^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$ ，or 1 to 1000
Fis＇	A1 action delayed timer setting －Sets action delayed timer for A1． When setting time has passed after the input enters the alarm output range， the alarm is activated． －Not available if No alarm action is selected in A1 action selection －Setting range： 0 to 9999 seconds
タゴ心	A2 action delayed timer setting －Sets action delayed timer for A2． When setting time has passed after the input enters the alarm output range， the alarm is activated． －Not available if alarm A2 is not added or if No alarm action is selected during A2 action selection －Setting range： 0 to 9999 seconds
Eari＇	Direct／Reverse action selection Reverse（Heating） －Selects Reverse（Heating）or Direct（Cooling）action． －Reverse（Heating）： akition
Fir－b	AT bias setting －Sets bias value during PID auto－tuning． －Not available for DC inputs －Setting range： 0 to $50^{\circ} \mathrm{C}\left(0\right.$ to $\left.100^{\circ} \mathrm{F}\right)$ or 0.0 to $50.0^{\circ} \mathrm{C}\left(0.0\right.$ to $\left.100.0^{\circ} \mathrm{F}\right)$
－る号	SVTC bias setting －Control desired value adds SVTC bias value to the value received by the SVTC command． －Available only when option C5 is added －Converted value of $\pm 20 \%$ of the rated value or $\pm 20 \%$ of the scaling range

－はゴ	SV2 indication selection －Selects whether SV2 setting item is indicated or not． －Available only when the option SM is added． －aFI（No indication），an（Indication）
Eriif	Output status selection when input abnormal －Selects whether OUT1 is turned OFF or not when DC input is in overscale or underscale． －Available only for DC current output type with DC input －afF（Output OFF），an（Output ON）
シタッド	OUT／OFF key function selection OUT／OFF function －Selects whether OUT／OFF key is used for control output OUT／OFF function or for Auto／Manual control function． －off（OUT／OFF function），

Sensor correction function

This corrects the input value from the sensor．When a sensor cannot be set at a location where control is desired，the sensor measuring temperature may deviate from the temperature in the controlled location．When controlling with plural controllers，sometimes the temperatures measured （input value）do not concur with the same setting value due to difference in sensor accuracy or dispersion of load capacities．In such a case，the control can be set at the desired temperature by adjusting the input value of sensors．

Energized／Deenergized

When［alarm action energized］is selected，the alarm output（between terminals 3－4，or 3－5） is conducted（ON）while the alarm output indicator is lit．
The alarm output is not conducted（OFF）while the alarm output indicator is not lit．
When［alarm action deenergized］is selected，the alarm output（between terminals 3－4，or 3－5）is not conducted（OFF）while the alarm output indicator is lit．
The alarm output is conducted（ON）while the alarm output indicator is not lit．
High limit alarm（when Energized is set）High limit alarm（when Deenergized is set）

（Fig．5．5－1）

（Fig．5．5－2）

5．6 Auto／Manual control function

Name，Functions

Auto／Manual control function
－If Auto／Manual control function is selected in the OUT／OFF key function selection，Automatic or Manual control function can be switched by pressing the（0）key in the PV／SV display mode． If control action is switched from automatic to manual or vice versa，balanceless－bumpless function works to prevent sudden change of manipulated variable． When automatic control is switched to manual control，the 1st dot from the right on the SV display flashes，and the output manipulated variable（MV）can be increased or decreased by pressing \triangle or ∇ key to perform the control．
By pressing the（D）key again，the mode reverts to the PV／SV display mode（automatic control）． （Whenever the power to the controller is turned on，automatic control starts．）
5．7 Control output OFF function

Character	Name，Functions
ロルに	Control output OFF function －A function to pause the control action or turn the control output of the unused instrument of the plural units OFF even if the power to the instrument is supplied． ［ $1 F$ ］is indicated on the PV display while the function is working． －Once the control output OFF function is enabled，the function cannot be released even if the power to the instrument is turned OFF and ON again． To cancel the function，press the（0）key again for approx． 1 second．

5．8 Output manipulated variable（MV）indication

Name，functions
Output manipulated variable indication
－In the PV／SV display mode，press the \mathbb{D} key for approx． 3 seconds．
Keep pressing the \mathbb{D} key until the output manipulated variable appears，though the main setting mode appears temporarily during the process．
（The SV display indicates output manipulated variable and the decimal point flashes at a cycle of every 0.5 second）．If the key is pressed again，the mode reverts to the PV／SV display．

6. Running

After the controller has been mounted to the control panel and wiring is completed, it can be started in the following manner.
(1) Switch power supply to the JCS-33A ON.

Switch power supply to the JCS-33A ON.

- For approx. 3s after the power is switched ON, the sensor input character and the temperature unit are indicated on the PV display and input range high limit value is indicated on the SV display. See (Table 5-1). (If any other value has been set in the scaling high limit setting, the set value is indicated on the SV display.) During this time, all outputs and LED indicators are in OFF status.
- After that, control starts indicating input value on the PV display, and main setting value on the SV display.
- While the Control output OFF function is working, $\underset{F}{ } F$ is indicated on the PV display.
(2) Input each setting value. Input each setting value, referring to " 5 . Setup".
(3) Turn the load circuit power ON.

Starts the control action so as to keep the controlled object at the main setting value.

7. Action explanation

7.1 OUT1 action

7.2 EVT (Heater burnout alarm) action

Alarm action		Output		
	Small \longleftrightarrow Load current \longrightarrow Large	Indication	Lit	Unlit

7.3 OUT1 ON/OFF action

7.4 Temperature alarm action

	High limit alarm	Low limit alarm	High/Low limits alarm
Alarm action			
	High/Low limit range alarm	Process high alarm	Process low alarm
Alarm action			
	High limit alarm with standby	Low limit alarm with standby	High/Low limit alarm with standby
Alarm action			

Standby functions in this section.
A1 indicator lights up when A1output terminals 3 and 4 are connected, and goes out when they are disconnected.

7.5 OUT2 (Heating/Cooling control) action

7.6 OUT2 (Heating/Cooling control) action (When setting Dead band)

7.7 OUT2 (Heating/Cooling control) action (When setting Overlap band)

8. PID auto-tuning of this controller

In order to set each value of P, I, D and ARW automatically, the auto-tuning process should be made to fluctuate to obtain an optimal value. One of 3 types of fluctuation below is automatically selected.
(1) In the case of a large difference between the setting value and processing temperature as the temperature is rising
When AT bias is set to $20^{\circ} \mathrm{C}$, the AT process will fluctuate at the temperature $20^{\circ} \mathrm{C}$ lower than the setting value.

(1) Calculating PID constant
(2) PID constant calculated
(3) Controlled by the PID constant set by auto-tuning.
(4) AT bias value
(2) When the control is stable or when control temperature is within $\pm 20^{\circ} \mathrm{C}$ of setting value. The AT process will fluctuate around the setting value.

(1) Calculating PID constant
(2) PID constant calculated
(3) Controlled by the PID constant set by auto-tuning.
(3) In the case of a large difference between the setting value and processing temperature as the temperature is falling
When AT bias is set to $20^{\circ} \mathrm{C}$, the AT process will fluctuate at the temperature $20^{\circ} \mathrm{C}$ higher than the setting value. Temperature $20^{\circ} \mathrm{C}$ higher than

(1) Calculating PID constant
(2) PID constant calculated
(3) Controlled by the PID constant set by auto-tuning.
(4) AT bias value

9. Specifications
 9.1 Standard specifications

Mounting method	: Flush
Setting method	Input system using membrane sheet key
Display	PV display
	SV display
	Red LED 4 digits, character size $10.2 \times 4.9 \mathrm{~mm}(\mathrm{H} \times \mathrm{W})$
	Green LED 4 digits, character size $8.8 \times 4.9 \mathrm{~mm}(\mathrm{H} \times \mathrm{W})$

Accuracy (Setting and Indication):
Thermocouple : Within $\pm 0.2 \%$ of each input span ± 1 digit, or within $\pm 2^{\circ} \mathrm{C}\left(4^{\circ} \mathrm{F}\right)$,
whichever is greater
However R, S inputs, 0 to $200^{\circ} \mathrm{C}\left(400^{\circ} \mathrm{F}\right)$: Within $\pm 6^{\circ} \mathrm{C}\left(12^{\circ} \mathrm{F}\right)$
B input, 0 to $300^{\circ} \mathrm{C}\left(600^{\circ} \mathrm{F}\right)$: Accuracy is not guaranteed
$\mathrm{K}, \mathrm{J}, \mathrm{E}, \mathrm{T}, \mathrm{N}$ inputs, less than $0^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right)$: Within $\pm 0.4 \%$ of input span ± 1 digit
RTD $\quad:$ Within $\pm 0.1 \%$ of each input span ± 1 digit, or within $\pm 1^{\circ} \mathrm{C}\left(2^{\circ} \mathrm{F}\right)$, whichever is greater
DC current : Within $\pm 0.2 \%$ of each input span ± 1 digit
DC voltage : Within $\pm 0.2 \%$ of each input span ± 1 digit
Input sampling period : 0.25 seconds
Input Thermocouple : K, J, R, S, B, E, T, N, PL-II, C(W/Re5-26) External resistance, 100 or less (However, B input: External resistance, 40Ω or less)
RTD : Pt100, JPt100, 3-wire system
Allowable input lead wire resistance (10Ω or less per wire)
DC current : 0 to 20 mA DC, 4 to 20 mA DC
Input impedance: 50Ω [50Ω shunt resistor (sold separately) must be installed between input terminals.] Allowable input current, 50mA or less
DC voltage : 0 to 1 V DC Input impedance ($1 \mathrm{M} \Omega$ or greater)
Allowable input voltage (5 V or less)
Allowable signal source resistance ($2 \mathrm{k} \Omega$ or less)
: 0 to 5V DC, 1 to 5V DC, 0 to 10V DC Input impedance (100k Ω or greater) Allowable input voltage (15V or less)
Allowable signal source resistance (100 Ω or less)
OUT1 output
Relay contact : 1a, Control capacity 3A 250V AC (resistive load)
1A 250V AC (inductive load $\cos \varnothing=0.4$)
Electrical life, 100,000 times
Non-contact voltage (For SSR drive): $12_{0}^{+2} \mathrm{~V}$ DC maximum 40mA (short-circuit protected)
DC current : 4 to 20mA DC, Load resistance, maximum 550Ω
A1 output
Action : ON/OFF action
Hysteresis : 0.1 to $100.0^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$, or 1 to 1000
Output : Relay contact 1a
Control capacity, 3A 250V AC (resistive load)
Electrical life, 100,000 times

Control action

PID action (with auto-tuning function)
PI action: When derivative time is set to 0
PD action (with auto reset function): When integral time is set to 0
P action (with auto reset function): When derivative and integral times are set to 0 .
ON/OFF action: When proportional band is set to 0 or 0.0
OUT1 proportional band : 0 to $1000^{\circ} \mathrm{C}\left(2000^{\circ} \mathrm{F}\right), 0.0$ to $999.9^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$ or 0.0 to 100.0%
(ON/OFF action when set to 0 or 0.0)
Integral time $\quad: 0$ to 1000 s (OFF when set to 0)
Derivative time $\quad: 0$ to 300 s (OFF when set to 0)
OUT1 proportional cycle: 1 to 120s (Not available for DC current output type)
ARW : 0 to 100\%
OUT1 ON/OFF action hysteresis: 0.1 to $100.0^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$, or 1 to 1000
OUT1 high limit setting : 0 to 100\% (DC current output type: -5 to 105\%)
OUT1 low limit setting : 0 to 100\% (DC current output type: -5 to 105\%)
Circuit isolation configuration

When OUT1 is non-contact voltage output or DC current output, OUT1 and Communication are not isolated, and OUT1 and SV2 are not isolated, and isolation test must not be carried out between them.

Isolation resistance	$: 10 \mathrm{M} \Omega$ or greater at 500 V DC
Dielectric strength	$: 1.5 \mathrm{kV}$ AC for 1 minute between input terminal and power terminal 1.5 kV AC for 1 minute between output terminal and power terminal
Supply voltage	: 100 to 240 V AC $50 / 60 \mathrm{~Hz}, 24 \mathrm{~V}$ AC/DC $50 / 60 \mathrm{~Hz}$
Allowable voltage fluct	tuation: 100 to 240 V AC: 85 to 264 V AC, 24 V AC/DC: 20 to 28 V AC/DC
Power consumption	: Approx. 8VA
Ambient temperature	: 0 to $50^{\circ} \mathrm{C}\left(32\right.$ to $122^{\circ} \mathrm{F}$)
Ambient humidity	: 35 to 85\%RH (no condensation)
Weight	: Approx. 200g
External dimension	: $48 \times 48 \times 95 \mathrm{~mm}$ (W x H x D $)$
Material	: Flame resistant resin (Case)
Color	: Light gray (Case)
Attached functions [Input abnormality ind	[Setting value lock], [Sensor correction], [Auto/manual control selection], dication]

		Output status			
Output status selection when input abnormal	Contents and Indication	OUT1		OUT2	
		Direct action	Reverse action	Direct action	Reverse action
and	Overscale Measured value has exceeded	ON (20mA) or OUT1 high limit value	OFF (4 mA) or OUT1 low limit value	OFF or OUT2 low limit value	ON or OUT2 high limit value
ロ\%F	Indication range high limit value. flashes.	OFF (4mA) or OUT1 low limit value			OFF or OUT2 low limit value
an】	Underscale Measured value has dropped below Indication range low limit value. ". . . . " flashes.	OFF (4 mA) or OUT1 low limit value	ON (20 mA) or OUT1 high limit value	ON or OUT2 high limit value	OFF or OUT2 low limit value
ם\%F			OFF (4 mA) or OUT1 low limit value	OFF or OUT2 low limit value	

Only for DC input and DC current output type, [Output status selection when input abnormal] is available. For other inputs and outputs except for DC input and DC current output, the output status will be the same one as when OFF is selected during [Output status selection when input abnormal]. For manual control, the preset manipulated variable (MV) is outputted.
Thermocouple and RTD input

Input	Input range	Indication range	Control range
K, T	-199.9 to $400.0^{\circ} \mathrm{C}$	-199.9 to $450.0^{\circ} \mathrm{C}$	-205.0 to $450.0^{\circ} \mathrm{C}$
	-199.9 to $750.0^{\circ} \mathrm{F}$	-199.9 to $850.0^{\circ} \mathrm{F}$	-209.0 to $850.0^{\circ} \mathrm{F}$
$\mathrm{Pt100}$	-199.9 to $850.0^{\circ} \mathrm{C}$	-199.9 to $900.0^{\circ} \mathrm{C}$	-210.0 to $900.0^{\circ} \mathrm{C}$
	-200 to $850^{\circ} \mathrm{C}$	-210 to $900^{\circ} \mathrm{C}$	-210 to $900^{\circ} \mathrm{C}$
	-199.9 to $999.9^{\circ} \mathrm{F}$	-199.9 to $999.9^{\circ} \mathrm{F}$	-211.0 to $1099.9^{\circ} \mathrm{F}$
	-300 to $1500^{\circ} \mathrm{F}$	-318 to $1600^{\circ} \mathrm{F}$	-318 to $1600^{\circ} \mathrm{F}$
$\mathrm{JPt100}$	-199.9 to $500.0^{\circ} \mathrm{C}$	-199.9 to $550.0^{\circ} \mathrm{C}$	-206.0 to $550.0^{\circ} \mathrm{C}$
	-200 to $500^{\circ} \mathrm{C}$	-207 to $550^{\circ} \mathrm{C}$	-207 to $550^{\circ} \mathrm{C}$
	-199.9 to $900.0^{\circ} \mathrm{F}$	-199.9 to $999.9^{\circ} \mathrm{F}$	-211.0 to $999.9^{\circ} \mathrm{F}$
	-300 to $900^{\circ} \mathrm{F}$	-312 to $1000^{\circ} \mathrm{F}$	-312 to $1000^{\circ} \mathrm{F}$

Indication range and Control range for thermocouple inputs other than the above:
Input range low limit value $-50^{\circ} \mathrm{C}\left(100^{\circ} \mathrm{F}\right)$ to Input range high limit value $+50^{\circ} \mathrm{C}\left(100^{\circ} \mathrm{F}\right)$

DC input

Indication range: [Scaling low limit value-Scaling span x 1\%] to [Scaling high limit value +Scaling span x 10\%]
However, " " or " . . . " flashes when a range of -1999 to 9999 is exceeded.
Control range: [Scaling low limit value-Scaling span x 1\%] to [Scaling high limit value + Scaling span $\times 10 \%$]

DC input disconnection: When DC input is disconnected, PV display flashes " " for 4 to 20 mA DC and 1 to 5 V DC inputs, and "-" for 0 to 1 V DC input. For 0 to 20 mA DC, 0 to 5 V DC and 0 to 10V DC inputs, the PV display indicates the corresponding value with which OmA or OV is inputted.

```
[Burnout]
When the thermocouple or RTD input is burnt out, OUT1 and OUT2 are turned off (for DC current output type, OUT1 low limit value, OUT2 low limit value) and PV display flashes "
```


[Self-diagnosis]

The CPU is monitored by a watchdog timer, and when any abnormal status is found on the CPU, the controller is switched to warm-up status.
[Automatic cold junction temperature compensation] (Only thermocouple input type)
This detects the temperature at the connecting terminal between the thermocouple and the instrument, and always maintains at the same status as when the reference junction is located at $0^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right)$.

[Power failure countermeasure]

The setting data is backed up in the non-volatile IC memory.

[Warm-up indication]

After the power supply to the instrument is turned on, the sensor input character and temperature unit are indicated on the PV display and rated scale high limit value is indicated on the SV display for 3 seconds.
For DC current and voltage input, the scaling high limit value is indicated.
Accessories: Screw type mounting bracket 1 set, Instruction manual 1 copy CT (Current transformer) CTL-6S 1 piece(for rating 5A, 10A, 20A)

CTL-12-S36-10L1
1 piece (for rating 50A)

9.2 Optional specifications

Alarm 2 (A2) (Option code: A2)
The output terminals are common for options [W], [LA] and [A2].
Action : ON/OFF action
Hysteresis: 0.1 to $100.0^{\circ} \mathrm{C}$ (${ }^{\circ}$), or 1 to 1000
Output : Relay contact 1a
Control capacity, 3A 250V AC (Resistive load)
Electrical life, 100,000 times

Loop break alarm (Option code: LA)

When MV (manipulated variable) is maximum or minimum and when the PV does not change as much as the preset span within the Loop break alarm assessment time, the alarm is activated.
This also detects the breaking status on the loop such as heater burnout, sensor burnout or actuator trouble.
The output terminals are common for options [W], [A2] and [LA].
Setting range: Loop break alarm action time, 0 to 200 minutes Loop break alarm action span, 0 to $150^{\circ} \mathrm{C}(\mathrm{F}), 0.0$ to $150.0^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right), 0$ to 1500
Output : Relay contact 1a
Control capacity, 3A 250V AC (Resistive load)
Electrical life, 100,000 times
Heater burnout alarm (including sensor burnout alarm) (Option code: W)
Monitors heater current with CT (current transformer), and detects burnout.
The output terminals are common for options [LA], [A2] and [W].
This option cannot be applied to DC current output type.
Rating $\quad: 5 \mathrm{~A}[\mathrm{~W}(5 \mathrm{~A})], 10 \mathrm{~A}[\mathrm{~W}(10 \mathrm{~A})], 20 \mathrm{~A}[\mathrm{~W}(20 \mathrm{~A})], 50 \mathrm{~A}[\mathrm{~W}(50 \mathrm{~A})]$ (Must be specified)
Setting range : $5 \mathrm{~A}[\mathrm{~W}(5 \mathrm{~A})], 0.0$ to 5.0 A (Off when set to 0.0)
10A [W(10A)], 0.0 to 10.0A (Off when set to 0.0)
20A [W(20A)], 0.0 to 20.0A (Off when set to 0.0)
50A [W(50A)], 0.0 to 50.0 A (Off when set to 0.0)
Setting accuracy: Within $\pm 5 \%$ of the rated value
Action : ON/OFF action
Output : Relay contact, 1a
Control capacity, 3A 250V AC (resistive load) Electrical life, 100,000 times
Heating/Cooling control (Option code: DT)
The specification of Heating side is the same as that of OUT1.
OUT2 proportional band: 0.0 to 10.0 times OUT1 proportional band (ON/OFF action when set to 0.0)
OUT2 integral time : The same as that of OUT1.
OUT2 derivative time : The same as that of OUT1.
OUT2 proportional cycle: 1 to 120 seconds
Overlap band/Dead band setting range:
Thermocouple, RTD input: -100.0 to $100.0^{\circ} \mathrm{C}$ (${ }^{(} \mathrm{F}$)
DC current, DC voltage input: -1000 to 1000 (The placement of the decimal point follows the selection)
Output: Non-contact relay output, 0.3A 250V AC
Cooling action mode selection function:
One cooling action can be selected from Air cooling (linear characteristic), Oil cooling (1.5th power of the linear characteristic) and Water cooling (2nd power of the linear characteristic) by keypad operation.

Serial communication (Option code: C5)

When this option is added, the option [SM] cannot be added with it.
The following operations can be carried out from the external computer.
(1) Reading and setting of the main setting value, PID values and each setting value
(2) Reading of the input value and action status (3) Change of the functions

Cable length : Maximum communication distance 1.2 km
Cable resistance: Within 50Ω (Terminator is not necessary or 120Ω or greater on one side.)
Communication interface
: Based on EIA RS-485
Communication method
: Half-duplex communication start-stop synchronous
Communication speed Parity
: 2400, 4800, 9600, 19200bps (Selectable by keypad)
: Even, Odd and No (Selectable by keypad)
Stop bit
: 1 and 2 (Selectable by key)
Communication protocol : Shinko protocol, Modbus RTU, Modbus ASCII (Selectable by keypad)
Number of units connectable: Maximum 31 units to 1 host computer
Communication error detection: Double detection by parity and checksum
Digital external setting : The SV from the programmable controller (with the option SVTC) can be digitally transmitted to the JCS-33A (with the option C5).
(The Setting value lock of the JCS-33A must be set to Lock 3)
When the data from the programmable controller is out of the SV high limit or low limit value, the JCS-33A ignores the value, and performs the control with the former value.
The control desired value adds SVTC bias value to the value received by the SVTC command.
Shinko communication converter IF-300-C5 is not available for Modbus protocol.
SV1/SV2 external selection (Option code: SM)
SV1 or SV2 can be selected by the external contact.
When this option is added, the option [C5] cannot be added with it.
Contact Open between 13-14: SV1, Contact Closed between 13-14: SV2
Contact current: 6mA
Color Black (Option code: BK) Front panel frame and case: Black
Terminal cover (Option code: TC): Electrical shock protection terminal cover

10. Troubleshooting

If any malfunctions occur, refer to the following items after checking the power supply to the controller. 10.1 Indication

Problem	Presumed cause and solution
PV display is indicating [$n \%$].	- Control output OFF function is working. Press the (D) key for approx. 1 second to release the function.
\qquad	- Thermocouple, RTD or DC voltage (0 to 1V DC) is burnt out. Change each sensor. How to check whether the sensor is burnt out [Thermocouple] If the input terminal of the instrument is shorted, and if a value around room temperature is indicated, the instrument is likely to be operating normally, however, the sensor may be burnt out. [RTD] If approx. 100 Ω of resistance is connected to the input terminals between A-B of the instrument and between B-B is shorted, and if approximate $0^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right)$ is indicated, the instrument is likely to be operating normally, however, the sensor may be burnt out. [DC voltage (0 to 1V DC)] If the input terminal of the instrument is shorted, and if scaling low limit value is indicated, the instrument is likely to be operating normally, however, the signal wire may be burnt out. - Check whether the input terminals of thermocouple, RTD or DC voltage (0 to 1 V DC) are securely mounted to the instrument input terminal. Connect the sensor terminals to the instrument input terminals securely.
[- - -] is flashing on the PV display.	- Check whether input signal source for DC voltage (1 to 5V DC) or DC current (4 to 20 mA DC) is disconnected. How to check whether the input signal wire is disconnected [DC voltage (1 to 5 V DC)] If the input to the input terminals of the instrument is 1V DC and if scaling low limit value is indicated, the instrument is likely to be operating normally, however, the signal wire may be disconnected. [DC current (4 to 20 mA DC)] If the input to the input terminals of the instrument is $4 \mathrm{~mA} D C$ and if scaling low limit value is indicated, the instrument is likely to be operating normally, however, the signal wire may be disconnected. - Check whether input signal wire for DC voltage (1 to 5 V DC) or DC current (4 to 20 mA DC) is securely connected to the instrument input terminals. - Check if polarity of thermocouple or compensating lead wire is correct. - Check whether codes (A, B, B) of RTD agree with the instrument terminals.

The PV display keeps indicating the value which was set during Scaling low limit setting.

- Check whether the input signal source for DC voltage (0 to 5V DC, 0 to $10 \mathrm{~V} D \mathrm{D}$) and DC current (0 to 20 mA DC) is disconnected.

How to check whether the input signal wire is disconnected

[DC voltage (0 to 5V DC, 0 to 10V DC)]
If the input to the input terminals of the instrument is 1 V DC and if the value corresponding to 1 V DC is indicated, the instrument is likely to be operating normally, however, the signal wire may be disconnected.
[DC current (0 to 20 mA DC)]
If the input to the input terminals of the instrument is 1 mA DC and if the value corresponding to $1 \mathrm{~mA} D C$ is indicated, the instrument is likely to be operating normally, however, the signal wire may be disconnected.

- Check whether the input lead wire terminals for $D C$ voltage (0 to 5 V DC, 0 to 10 V DC) or DC current (0 to 20 mA DC) are securely mounted to the instrument input terminals.
The indication of PV display is abnormal or unstable.
- Check whether sensor input or temperature unit (${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$) is correct. Select the sensor input and temperature unit (${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$) properly.
- Sensor correcting value is unsuitable. Set it to a suitable value.
- Check whether the specification of the sensor is correct.
- AC leaks into the sensor circuit. Use an ungrounded type sensor.
- There may be equipment that interferes with or makes noise near the controller.
Keep equipment that interferes with or makes noise away from the controller.
The PV display is indicating \quad • Internal memory is defective.

Contact our agency or us.
10.2 Key operation

Problem	Presumed cause and solution
- Unable to set the SV, P, I, D, proportional cycle or alarm setting - The values do not change by Δ, ∇ keys.	- Setting value lock (Lock 1 or Lock 2) is designated. Release the lock designation. - During PID auto-tuning or auto-reset. In the case of PID auto-tuning, cancel auto-tuning. It takes approximately 4 minutes until auto-reset is finished.
The setting indication does not change in the input range even if the \triangle, ∇ keys are pressed, and unable to set the value.	- SV high or low limit value in Auxiliary function setting mode 1 may be set at the point where the value does not change. Set it to a suitable value while in the Auxiliary function setting mode 1.

10.3 Control

Problem	Presumed cause and solution
Temperature does not rise.	- Sensor is out of order. Replace the sensor. - Check whether the Sensor or control output terminals are securely mounted to the instrument input terminals. Ensure that the sensor or control output terminals are mounted to the instrument input terminals securely. - Check whether the wiring of sensor or control output terminals is correct.
The control output remains in an ON status.	- OUT1 or OUT2 low limit value is set to 100% or greater in Auxiliary function setting mode 2. Set it to a suitable value.
The control output remains in an OFF status.	- OUT1 or OUT2 high limit value is set to 0% or less in Auxiliary function setting mode 2. Set it to a suitable value.

- If you have any inquiries, please consult our agency or the shop where you purchased the unit.

SHINKO TECHNOS CO.,LTD. OVERSEAS DIVISION

Reg. Office : 1-2-48, Ina, Minoo, Osaka, Japan
Mail Address: P.O.Box 17, Minoo, Osaka, Japan
URL :http://www.shinko-technos.co.jp
E-mail : overseas@shinko-technos.co.jp
Tel : 81-72-721-2781
Fax: 81-72-724-1760

