Standard Callendar - Van Dusen

The relationship between resistance (R) and temperature (t) can be generated from the Callendar-Van Dusen equation.

Note: The carot symbol " $^{"}$ is used here to denote exponents. Example: $4^2 = 16$, $4^{-1} = 0.25$.

For the range -200 °C to 0 °C: $R(t) = R(0) [1 + A(t) + B(t)^2 + (t - 100)C(t)^3]$

For the range 0 °C to 661 °C: $R(t) = R(0) (1 + A(t) + B(t)^2)$

Where: R(t) = resistance in Ohms at temperature t

R(0) = resistance in Ohms at 0°C t = temperature in °C

Typical Calibration Coefficients:

SDI Element part numbers beginning with PT (example: PT100/15A):

ALPHA (°C^-1) = 3.85055 x 10^-3

A (°C^-1)	= 3.90830 x 10^-3
B (°C^-2)	= -5.77500 x 10^-7
C (°C^-4)	= -4.18301 x 10^-12

SDI Element part numbers beginning with **D** (example: D100/15A):

ALPHA (°C^-1) = 3.92000 x 10^-3

A (°C^-1)	=	3.97869 x 10^-3
B (°C^-2)	=	-5.86863 x 10^-7
C (°C^-4)	=	-4.16696 x 10^-12

ALPHA is the temperature coefficient of resistance obtained by measurement of the detector resistance at 0°C and 100°C.

 $ALPHA (^{\circ}C^{-1}) = (R(100) - R(0)) / (100 \times R(0))$

Where: R(100) = resistance in Ohms at 100°C

These equations are listed as the basis for the temperature/resistance tables for platinum resistance thermometers and are not intended to be used for the calibration of individual thermometers.

The coefficients for individual thermometers can be obtained by calibration. <u>Contact SDI</u> for details on Calibration Services for Industrial Platinum Resistance Thermometers. All calibrations are traceable to the National Institute of Standards and Technology (NIST).

Saved: Literature 1262